Authors:  PĆ³voa TF, Alves AM, Oliveira CA, Nuovo GJ, Chagas VL, Paes MV


Issue:  PLoS One. 2014 Apr 15;9(4):e83386

PMID:  24736395


Abstract

Dengue is a public health problem, with several gaps in understanding its pathogenesis. Studies based on human fatal cases are extremely important and may clarify some of these gaps. In this work, we analyzed lesions in different organs of four dengue fatal cases, occurred in Brazil. Tissues were prepared for visualization in optical and electron microscopy, with damages quantification. As expected, we observed in all studied organ lesions characteristic of severe dengue, such as hemorrhage and edema, although other injuries were also detected. Cases presented necrotic areas in the liver and diffuse macro and microsteatosis, which were more accentuated in case 1, who also had obesity. The lung was the most affected organ, with hyaline membrane formation associated with mononuclear infiltrates in patients with pre-existing diseases such as diabetes and obesity (cases 1 and 2, respectively). These cases had also extensive acute tubular necrosis in the kidney. Infection induced destruction of cardiac fibers in most cases, with absence of nucleus and loss of striations, suggesting myocarditis. Spleens revealed significant destruction of the germinal centers and atrophy of lymphoid follicles, which may be associated to decrease of T cell number. Circulatory disturbs were reinforced by the presence of megakaryocytes in alveolar spaces, thrombus formation in glomerular capillaries and loss of endothelium in several tissues. Besides histopathological and ultrastructural observations, virus replication were investigated by detection of dengue antigens, especially the non-structural 3 protein (NS3), and confirmed by the presence of virus RNA negative strand (in situ hybridization), with second staining for identification of some cells. Results showed that dengue had broader tropism comparing to what was described before in literature, replicating in hepatocytes, type II pneumocytes and cardiac fibers, as well as in resident and circulating monocytes/macrophages and endothelial cells.